Abstract

Vortex solutions of coupled Gross–Pitaevskii equations for a two-component Bose–Einstein condensate of exciton polaritons have been described theoretically with the inclusion of the dependence of the Rabi splitting energy on the density of the exciton component. It has been shown that the inclusion of blueshift leads to a considerable decrease in the densities of both components of the condensate. The spatial profiles of excitons and photons in the polariton system, as well as the energy of vortex excitation formation, have been calculated taking into account nonlinear corrections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.