Abstract

Nano-sized clusters consisting of strongly preferentially oriented, partially coherent nanocrystallites were observed in Cr–Al–N and Cr–Al–Si–N coatings deposited using cathodic arc evaporation. Microstructure analysis of the coatings, which was done using the combination of X-ray diffraction (XRD) and transmission electron microscopy with high resolution (HRTEM), revealed furthermore stress-free lattice parameters, size and local disorientation of crystallites within the nano-sized clusters in dependence on the aluminium and silicon contents, mean size of these clusters and the kind of structure defects. Within the face-centred cubic (fcc) Cr 1 − x − y Al x Si y N phase, the stress-free lattice parameter was described by the equation a = (0.41486 − 0.00827 · x + 0.034 · y) nm. The size of individual crystallites decreased from ∼ 11 nm in Cr 0.92Al 0.08N to ∼ 4 nm in Cr 0.24Al 0.65Si 0.10N. These nanocrystallites formed clusters with the mean size between 36 and 56 nm. The mutual disorientation of the partially coherent nanocrystallites forming the clusters increased with increasing aluminium and silicon contents from 0.5° to several degrees. The disorientation of neighbouring nanocrystallites was explained by the presence of screw dislocations and by presence of phase interfaces in coatings containing a single fcc phase and several phases, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.