Abstract

Theoretical physical models of the Martia interior are presented in the light of new and revised data and constraints. These models include thermal evolution, densities, and seismic wave velocities. The interior of Mars appears to be Earth-like in many respects. Although thermal models indicate that Mars has passed its peak of evolution it may still have an asthenosphere and may be moderately active tectonically. Mars has an Fe-FeS core with a radius of and may be moderately active tectonically. Mars has an Fe-FeS core with a radius of 1500–2000 km. The mantle is enriched in FeO with an olivine composition of about Fo75. Theoretically determined seismic wave velocities are relatively well constrained in the mantle with upper-mantle Pn velocities ranging from 7.64 to 7.80 km/sec. However, there are wide variations in VP in the core dependent on composition. The shadow zone due to the core is larger than the Earth's.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.