Abstract

Abstract A non-Fourier thermal transport regime characterizes the heat conduction in solids with internal structure. Several thermodynamic theories attempt to explain the separation from the Fourier regime in such kind of systems. Here we develop a two-temperature model to describe the non-Fourier regime from the principles of non-equilibrium thermodynamics. The basic assumption is the existence of two well-separated length scales in the system, namely, one related with the matrix dimension (bulk) and the other with the characteristic length of the internal structure. Two Fourier type coupled transport equations are obtained for the temperatures which describe the heat conduction in each of the length scales. Recent experimental results from several groups on the thermal response of different structured materials are satisfactorily reproduced by using the coupling parameter as a fitting parameter. The similarities and differences of the present formalism with other theories are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.