Abstract

A potential connection between the residual stresses generated by a cladding operation, the thermal stresses generated during post weld heat treatment (PWHT), and the propensity for underclad cracking was investigated. As-deposited residual stresses were measured at ambient temperature, using the contour method and neutron diffraction. Measurements were performed in 20mm thick steel substrates that were partially clad with AISI grade 309 (layer 1) and grade 308 (layer 2) stainless steels, using the submerged-arc welding process. Neutron diffraction measurements were also performed after heating the clad samples to 200 and 325°C. The mechanical properties in each region within the steel heat affected zone (HAZ) were determined, at those same temperatures, by subjecting coupons to simulated cladding thermal cycles and then to tension tests. Substantial tensile residual stresses in the HAZ were measured after cladding. These persisted during subsequent heating to 325°C: a temperature that is approximately at the mid-point of the heating ramp in a typical PWHT cycle. The tensile results, however, indicated that each microstructural zone within the HAZ is likely to retain sufficient ductility to prevent fracture, and that underclad cracking is unlikely to occur during the early stages of the PWHT ramp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call