Abstract

Resin transfer moulding (RTM) is a widely used manufacturing technique of composite parts. A proper selection of process parameters is the key to yield successful moulding results and obtain a good part. Among other things, when thermoset resins are processed, the shrinkage that occurs due to the polymerisation reaction further complicates the situation. In this paper, a finite difference analysis is proposed to simulate the effect of thermal and rheological changes during thin plates cooling after processing. Classical Laminate Theory is here implemented to compute composite internal stresses resulting from these thermo-rheological conditions. Laminate stresses are then computed and warpage obtained with the proposed numerical algorithm. Samples of thin plates were moulded combining two glass reinforcement materials. During cooling, after processing plates warpage was recorded and results compared to model predictions. This analysis presents the basis of a further numerical optimisation for thick composite parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call