Abstract

The distribution of internal stresses and the density of the accumulated energy in the deformed polycrystal austenitic steel were investigated. The internal stresses and the accumulated energy density were determined using the bend extinction contours observed on the deformed steel micrographs. The laws of internal stresses distributions and the accumulated energy density in the grains with various bending types were determined. At the deformation degrees ε = 14 % and ε = 25 % the average values of internal stresses and the accumulated energy density inside the individual grains with compound bending were higher than in the grains with simple bending. It testified the fact that the grains with compound bending were more stressed. At the increase of the steel deformation degree up to ε = 25 % the growth of contributions from additional modes observed on the internal stress distributions slowed down and at ε > 25 % the average internal stress decreased. The relaxation of internal stresses was due to the origin and increase of the microtwins volume fraction at the austenitic steel deformation. The presence of microtwins influenced the distributions of internal stresses and the accumulated energy density in the deformed polycrystal austenitic steel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.