Abstract

Materials containing second phases show superplastic behavior during thermal cycling (internal stress superplasticity). In the present study, this behavior has been investigated by thermal cycling creep tests with a triangular wave having fixed heating and cooling rates, using a Be-particle–dispersed Al matrix alloy. The thermal cycling creep rates were much higher than the isothermal creep rates and proportional to the applied stress at intermediate stresses. It was interpreted by the previous theoretical model of internal stress superplasticity, and the values of the thermal cycling creep rate were about 60% of the theoretical one. The discrepancy was explained by the transition after each temperature reversal until achieving the quasi-steady state stress distribution during thermal cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.