Abstract

Hard TiAl(B)N coatings were deposited by radio-frequency magnetron sputtering in reactive mode in an argon and nitrogen environment using a TiAlB target with 12 at.% of boron. The deposition was carried out under ion bombardment at various negative bias voltages in the range of 0 to 170 V, and at substrate temperatures between 453 and 523 K. The internal stress in the coatings was studied at room temperature as a function of annealing temperatures in ambient air up to 1123 K. The heating duration was 2 h followed by annealing for 1 h. The microstructure, phase composition and hardness were also studied prior to and after annealing. We found that the TiAlBN coatings consist of TiAl 3 and TiN phases. With increasing ion bombardment, the structure of the coatings changes from columnar to nano-scale features. Prior to annealing we also observed a correlation between the residual stress and hardness. After annealing, the compressive stresses of the TiAl(B)N coatings decreased from 1.0 GPa to less than 0.2 GPa, while the hardness remained constant or increased from ∼ 10 GPa to ∼ 25 GPa. The hardness increase of the coatings after annealing is related to a self-hardening effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.