Abstract
ABSTRACTInterpenetrating Al2O3/Al composites were created by liquid-metal infiltration of alumina preforms with three-dimensional periodicity produced by a robotic deposition method. Volume-averaged lattice strains in the alumina phase were measured by synchrotron x-ray diffraction at various uniaxial compression stresses up to 350 MPa. Load transfer, which is experimentally found to occur between the aluminum and the alumina phase, is in agreement with simple rule of mixtures models. Spatially resolved measurements showed variations in load transfer at different positions within the composite for the elastic-, plastic-, and damage-deformation regimes. Using phase-enhanced imaging, the extent of damage within the composites was observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.