Abstract

Strain and temperature are critical parameters to monitor in Li-ion batteries (LIBs) to improve their safety and long-term cycling stability. High local current densities can result in a massive heat release, decomposition of the electrolyte, gas evolution and even explosion of the battery cell, known as thermal runaway. However, the corrosive chemical environment in the batteries is a challenge to monitor strain and temperature. Optical fiber sensors, due to their high chemical stability and small diameter, can be embedded within the LIBs, thus becoming an interesting solution for operando and in situ measurements. In this work, a hybrid sensing network constituted by fiber Bragg gratings and Fabry-Perot cavities is proposed for the discrimination of strain and temperature. The proof-of-concept was performed by attaching the sensing network to the surface of a smartphone battery. Afterwards, it was embedded in a Li-ion pouch cell to monitor and simultaneously discriminate internal strain and temperature variations in three different locations. Higher thermal and strain variations are observed in the middle position. The methodology presented proves to be a feasible and non-invasive solution for internal, real-time, multipoint and operando temperature and strain monitoring of LIBs, which is crucial for their safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call