Abstract
This work deals with the exponential stabilization of a system of three semilinear parabolic partial differential equations (PDEs), written in a strict feedforward form. The diffusion coefficients are considered distinct and the PDEs are interconnected via both a reaction matrix and a nonlinearity. Only one of the PDEs is assumed to be controlled internally, thereby leading to an underactuated system. Constructive and efficient control of such underactuated systems is a nontrivial open problem, which has been solved recently for the linear case. In this work, these results are extended to the semilinear case, which is highly challenging due the coupling introduced by the semilinearity. Modal decomposition is employed, where due to the semilinearity, the finite-dimensional part of the solution is coupled with the infinite-dimensional tail. A transformation is then employed to map the finite-dimensional part into a target system, which allows for an efficient design of a static linear proportional state-feedback controller. Furthermore, a high-gain approach is employed in order to compensate for the semilinear terms. Lyapunov stability analysis is performed, leading to LMI conditions guaranteeing exponential stability with an arbitrary decay rate. The LMIs are shown to always be feasible, provided the number of actuators and the value of the high gain parameter are large enough. Numerical examples demonstrate the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.