Abstract

The periodic, inverse scattering transform (PIST) is a powerful analytical tool in the theory of integrable, nonlinear evolution equations. Osborne pioneered the use of the PIST in the analysis of data form inherently nonlinear physical processes. In particular, Osborne's so-called nonlinear Fourier analysis has been successfully used in the study of waves whose dynamics are (to a good approximation) governed by the Korteweg–de Vries equation. In this paper, the mathematical details and a new application of the PIST are discussed. The numerical aspects of and difficulties in obtaining the nonlinear Fourier (i.e., PIST) spectrum of a physical data set are also addressed. In particular, an improved bracketing of the “spectral eigenvalues” (i.e., the ±1 crossings of the Floquet discriminant) and a new root-finding algorithm for computing the latter are proposed. Finally, it is shown how the PIST can be used to gain insightful information about the phenomenon of soliton-induced acoustic resonances, by computing the nonlinear Fourier spectrum of a data set from a simulation of internal solitary wave generation and propagation in the Yellow Sea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.