Abstract
The purpose of this study was to develop a novel algorithm to create a robust internal respiratory signal (IRS) for retrospective sorting of four-dimensional (4D) computed tomography (CT) images. The proposed algorithm combines information from the Fourier transform of the CT images and from internal anatomical features to form the IRS. The algorithm first extracts potential respiratory signals from low-frequency components in the Fourier space and selected anatomical features in the image space. A clustering algorithm then constructs groups of potential respiratory signals with similar temporal oscillation patterns. The clustered group with the largest number of similar signals is chosen to form the final IRS. To evaluate the performance of the proposed algorithm, the IRS was computed and compared with the external respiratory signal from the real-time position management (RPM) system on 80 patients. In 72 (90%) of the 4D CT data sets tested, the IRS computed by the authors' proposed algorithm matched with the RPM signal based on their normalized cross correlation. For these data sets with matching respiratory signals, the average difference between the end inspiration times (Δtins) in the IRS and RPM signal was 0.11 s, and only 2.1% of Δtins were more than 0.5 s apart. In the eight (10%) 4D CT data sets in which the IRS and the RPM signal did not match, the average Δtins was 0.73 s in the nonmatching couch positions, and 35.4% of them had a Δtins greater than 0.5 s. At couch positions in which IRS did not match the RPM signal, a correlation-based metric indicated poorer matching of neighboring couch positions in the RPM-sorted images. This implied that, when IRS did not match the RPM signal, the images sorted using the IRS showed fewer artifacts than the clinical images sorted using the RPM signal. The authors' proposed algorithm can generate robust IRSs that can be used for retrospective sorting of 4D CT data. The algorithm is completely automatic and requires very little processing time. The algorithm is cost efficient and can be easily adopted for everyday clinical use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.