Abstract

Transverse vibrations of axially moving beams with multiple concentrated masses have been investigated. It is assumed that the beam is of Euler–Bernoulli type, and both ends have simply supports. Concentrated masses are equally distributed on the beam. This system is formulated mathematically and then sought to find out approximate solutions. In case of three-to-one internal resonance, analytical solutions are derived by means of method of multiple scales (a perturbation method). It is assumed that axial velocity of the beam is harmonically varying around a mean-constant velocity. Steady-state vibration characteristics are investigated from the amplitude-phase modulation equations. Then, the effects of both magnitude and number of the concentrated masses on nonlinear vibrations are investigated numerically in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.