Abstract

BackgroundThe great majority of afferent neurons of insect legs project into their segmental ganglion. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. Such intersegmental projections never ascend as far as the brain and they form extensive ramifications within thoracic ganglia. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion.ResultsWe describe novel afferent neurons in distal segments of locust legs that project directly into the brain without forming ramifications in other ganglia. In the brain, the fibres terminate with characteristic terminals in a small neuropile previously named the superficial ventral inferior protocerebrum. The somata of these neurons are located in the tibiae and tarsi of all legs and they are located within branches of peripheral nerves, or closely associated with such branches. They are not associated with any accessory structures such as tendons or connective tissue strands as typical for insect internal mechanoreceptors such as chordotonal organs or stretch receptors. Morphologically they show great similarity to certain insect infrared receptors.We could not observe projections into the superficial ventral inferior protocerebrum after staining mandibular or labial nerves, but we confirm previous studies that showed projections into the same brain neuropile after staining maxillary and antennal nerves, indicating that most likely similar neurons are present in these appendages also.ConclusionBecause of their location deep within the lumen of appendages the function of these neurons as infrared receptors is unlikely. Their projection pattern and other morphological features indicate that the neurons convey information about an internal physiological parameter directly into a special brain neuropile. We discuss their possible function as thermoreceptors.

Highlights

  • The number, location and innervation of mechanoreceptors in insect legs have been studied intensively in the past, especially in locusts

  • One conclusion from numerous studies from the 1980s [2,3,4,5,6,7,8] was that the axons of all mechanosensory neurons located in distal leg segments, that is all sensory fibres originating from neurons of trochanter, femur, tibia and tarsus, project only into their segmental ganglia

  • To exclude the possibility that sensory projections had been overlooked in previous studies, we started to reinvestigate this question by retrograde staining of a variety of nerves innervating leg sensory structures in migratory locusts using NeurobiotinTM-staining

Read more

Summary

Introduction

The number, location and innervation of mechanoreceptors in insect legs have been studied intensively in the past, especially in locusts (for review see [1]). A few mechanoreceptive neurons of more proximal segments (coxa and subcoxa) may form intersegmental projections. All these older studies used heavy metal salts for staining, cobaltous chloride in most cases, and subsequent. In well-stained preparations it became obvious that these fibres terminate in a special protocerebral neuropile, previously named superficial ventral inferior protocerebrum (SVIP) [10,11] These authors observed a few fibres terminating in this neuropile after staining maxillary and antennal nerves in locusts and crickets. Intersegmental projections are rare and are only formed by sense organs associated with the basal joints of the legs. A few afferents of chordotonal organs of the subcoxal joints ascend as far as the suboesophageal ganglion

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.