Abstract

There are unique benefits from advanced/micro-reactor designs and fuel types that offer safety features in the case of an accident that may reduce environmental consequences compared to conventional reactors and fuels. Tristructural isotropic (TRISO) fuel particles are a robust advanced nuclear fuel type that leads to the unique question of how unruptured, activated TRISO particles will interact with humans. TRISO particles are 900 μm in size, and that particle size restricts internal dose assessment to the ingestion pathway. Activity of the TRISO particle was established by High Temperature Engineering Test Reactor simulations. The TRISO particle encapsulation was assumed to be perfect; exploration of internal dose contribution from radionuclides released from encapsulation was not included. The TRISO particle was assumed to be mixed actively within each alimentary tract compartment such that homogenous distribution could be assumed according to the International Commission on Radiological Protection publication 133. The dose assessment results indicate that the rectosigmoid colon had the highest internal organ dose for both reference male (2.1 Sv) and female (2.3 Sv). The internal dose from ingestion of the scenario-specific TRISO particle was 0.25 Sv for the reference male and 0.29 Sv for the reference female, which exceeds the annual occupational effective dose limit of 0.05 Sv in the Code of Federal Regulations, 10 CFR Part 20 Subpart C. Similarly, the annual occupational limit of 0.5 Sv to any one organ would be exceeded for the left colon, right colon, and rectosigmoid colon for both the reference male and female.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.