Abstract

Researchers have observed the internal oxidation phenomenon in binary alloy coatings when developing refractory alloy coatings for protective purposes by conducting annealing at high temperatures and in oxygen-containing atmospheres. The coatings were assembled using cyclical gradient concentration deposition during cosputtering by employing a substrate holder rotating at a slow speed. The internally oxidized zone demonstrated a laminated structure, comprising alternating oxygen-rich and oxygen-deficient layers stacked in a general orientation. In the current study, Ru–Ta–Zr coatings were prepared with various stacking sequences during cosputtering. The Ru–Ta–Zr coatings were annealed at 600°C in an atmosphere continuously purged with 1% O2–99% Ar mixed gas for 30min. A transmission electron microscope was used to examine the periods of the laminated layers and crystallinity of the annealed coatings. Depth profiles produced using an Auger electron spectroscope and X-ray photoelectron spectroscope were used to certify the periodic variation of the related constituents and chemical states of the elements, respectively. The results indicate that the internally oxidized ternary coatings are stacked of Ru-, Ta2O5-, and ZrO2-dominant sublayers and that the stacking sequences of the sublayers affect the crystalline structure of the coatings. Zr is oxidized preferentially in the Ru–Ta–Zr coatings, increasing the surface hardness of the oxidized coatings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call