Abstract

Significant advances in RNA sequencing have been recently made possible by using oligo(dT) primers for simultaneous mRNA enrichment and reverse transcription priming. The associated increase in efficiency has enabled more economical bulk RNA sequencing methods and the advent of high-throughput single-cell RNA sequencing, already one of the most widely adopted methods in transcriptomics. However, the effects of off-target oligo(dT) priming on gene expression quantification have not been appreciated. In the present study, we describe the extent, the possible causes, and the consequences of internal oligo(dT) priming across multiple public datasets obtained from various bulk and single-cell RNA sequencing platforms. To explore and address this issue, we developed a computational algorithm for RNA counting methods, which identifies the sequencing read alignments that likely resulted from internal oligo(dT) priming and removes them from the data. Directly comparing filtered datasets to those obtained by an alternative method reveals significant improvements in gene expression measurement. Finally, we infer a list of human genes whose expression quantification is most likely to be affected by internal oligo(dT) priming and predict that when measured using these methods, the expression of most genes may be inflated by at least 10% whereby some genes are affected more than others.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.