Abstract

The 1H nuclear magnetic resonance spectral parameters are reported for benzylidene diacetate in CS2 and acetone-d6 solutions. The long-range spin–spin coupling constant over six formal bonds, 6J, is used to derive apparent twofold barriers to rotation about the exocyclic C(1)—C bond in the two solutions. The conformation of lowest energy has the α. C—H bond in the benzene plane. The barrier is higher in CS2 than in acetone-d6 solution, in contrast to a molecule like benzyl chloride. In the 2,6-dibromo derivative, the free energy of activation for reorientation about the bond in question is 36 kJ/mol at 165 K in dimethyl ether solution. Such a high barrier implies a very small six-bond proton–proton coupling constant for this derivative because 6J is proportional to the expectation value of sin2θ. The angle θ is zero when the α C—H bond lies in the benzene plane. 6J is −0.051 Hz in acetone-d6 solutions; its sign is determined by double resonance experiments. The question of an angle-independent component of 6J, that is, whether 6J is finite at θ = 0°, is addressed. A maximum magnitude of 0.02 Hz may be present at θ = 0° for the 2,6-dibromo derivative, although a zero magnitude is also compatible with the experimental data. In a compound with a higher internal barrier, α,α,2,6-tetrachlorotoluene, the experimental results are best in accord with a negligibly small 6J at θ = 0°. Keywords: 1H NMR of benzylidene diacetate, spin–spin coupling constants for benzylidene diacetate, DNMR, 2,6-dibromobenzylidene diacetate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.