Abstract

The conventional internal model control (IMC) structure commonly used in the process control field is applied for the control of robot manipulators. A pre-compensation structure, which comprises a linearizer and a stabilizer, is used to modify the dynamics of the robot manipulator so that the standard IMC structure can be implemented without violating its original straightforward and intuitive design principle. Analysis of this robot IMC structure reveals that this control algorithm can actually be considered as an enhancement of the conventional robot computed-torque control scheme. Both simulation and experimental results demonstrate that this proposed robot IMC scheme has significantly improved performance as compared with that for the conventional robot computed-torque control algorithm, especially in the presence of modelling uncertainty and external disturbances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.