Abstract

The origin of grain boundary sliding (GBS) is known to be slip-induced due to plastic incompatibility near the grain boundary at room temperature. In this study, the relationship between GBS and crystal orientation was investigated in AZ31 Mg alloy rolled sheets at room temperature. The GBS tendency was determined as related to basal dislocation slip where the GBS boundaries were generally located between the grains with respectively high and low or high and high Schmid factors for basal slip. The results indicate that GBS is attributed to the plastic incompatibility caused by anisotropic basal and prismatic slip. Furthermore, GBS was located in regions with localized deformation near grain boundaries. Cross-sectional focused ion beam/transmission electron microscopy (FIB/TEM) observations of these regions revealed seriately arranged subgrains adjacent to a grain boundary. Therefore, we propose that RT-GBS in AZ31 can be caused by localized crystal rotation due to dynamic recover and recrystallization by stress concentration near the grain boundary but not ordinary GBS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.