Abstract

Biofilm biodegradation was coupled with ultra-violet photolysis using the internal loop photobiodegradation reactor for degradation of quinoline. Three protocols-photolysis alone (P), biodegradation alone (B), and intimately coupled photolysis and biodegradation (P&B)-were used for degradation of quinoline in batch and continuous-flow experiments. For a 1,000 mg/L initial quinoline concentration, the volumetric removal rate for quinoline was 38 % higher with P&B than with B in batch experiments, and the P&B kinetics were the sum of kinetics from the P and B experiments. Continuous-flow experiments with an influent quinoline concentration of 1,000 mg/L also gave significantly greater quinoline removal in P&B, and the quinoline-removal kinetics for P&B were approximately equal to the sum of the removal kinetics for P and B. P&B similarly increased the rate and extent of quinoline mineralization, for which the kinetics for P&B were nearly equal to the sum of kinetics for P and B. These findings support that the rate-limiting step for mineralization was transformation of quinoline, which was accelerated by the simultaneous action of photolysis and biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.