Abstract

Diffusive flux of bioavailable soluble reactive phosphorus (SRP) across the sediment–water interface is one mechanism by which sediments can be a source of phosphorus to the water column in aquatic systems and contribute to primary productivity. This process is dependent on sediment biogeochemistry and SRP concentration gradients at the sediment–water interface. In systems subjected to episodic external pulses of nutrient-rich water, SRP concentration gradients can have potential implications for diffusive flux. In this study, we sought to investigate two hypotheses: (1) diffusive flux of SRP from sediments is a significant source of SRP in the annual budget for the oligohaline Lake Pontchartrain estuary and (2) under SRP-depleted water column conditions following large episodic, external pulses of nitrogen-rich Mississippi River water to the estuary, internal SRP loading by diffusive flux can regenerate SRP in the water column to previously observed levels rapidly. Our specific objectives were to: (i) determine sediment, water column, and phytoplankton characteristics at multiple locations in the estuary, (ii) measure rates of SRP diffusive flux from sediments using intact cores under aerobic and anaerobic incubations, (iii) estimate the potential for water column SRP regeneration by diffusive flux under SRP-depleted conditions using a simple model, and (iv) estimate the annual load of SRP from the sediments by diffusive flux. Results indicate that diffusive flux of SRP from Lake Pontchartrain sediments likely contributes ~30–44% of the annual SRP load to the estuary. Further, internal SRP loading by diffusion has the potential to regenerate SRP in SRP-depleted waters to previously observed concentrations in <60 days. Our findings suggest that a sequence of events is feasible where external pulses of nitrogen-rich water produce phosphorus-limited conditions, followed by an internal pulse of SRP from sediments to restore nitrogen-limited conditions. This internal SRP load may be an important contributor in promoting blooms of nitrogen-fixing harmful algae under summertime low-nutrient conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call