Abstract

A singularly perturbed boundary value problem for a second-order ordinary differential equation known in applications as a stationary reaction–diffusion equation is studied. A new class of problems is considered, namely, problems with nonlinearity having discontinuities localized in some domains, which leads to the formation of sharp transition layers in these domains. The existence of solutions with an internal transition layer is proved, and their asymptotic expansion is constructed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.