Abstract
Near-peak-aged AERMET 100 is susceptible to severe internal hydrogen embrittlement (IHE) at 23 °C, if a sufficient diffusible hydrogen content is present, compromising the high toughness of this ultrahigh-strength steel (UHSS). Evidence includes the threshold stress intensity for subcritical IHE (K TH ) as low as 10 pct of the plane-strain fracture toughness (K IC ) and a fracture-mode transition from microvoid coalescence to brittle transgranular (TG) cracking, apparently along martensite lath interfaces and cleavage planes. The K TH value decreases from a K IC value of 132 to 143 MPa√m to 12 MPa√m, and the amount of brittle TG fracture increases to nearly 100 pct as the concentration of diffusible H increases from essentially 0 to 8 wppm, with severe embrittlement in the 0 to 2 wppm H regime. The IHE is time dependent, as evidenced by increasing K TH values with increasing dK/dt and K-independent subcritical crack growth rates, and is attributed to diffusional H repartition from reversible trap sites to the stressed crack tip. The partition distance is ∼1 µm, consistent with the fine-scale microstructure of AERMET 100. The causes of the susceptibility of AERMET 100 to TG IHE are very high crack-tip stresses and a reservoir of mobile H trapped reversibly at (Fe,Cr,Mo)2C precipitates. These factors enable repartition of H to misoriented martensite lath interfaces and interstitial sites near cleavage planes, with each prone to decohesion along a connected path. Predissolved H also reduces the ductile fracture toughness of AERMET 100 at high loading rates, perhaps due to reduced void growth caused by H trapped strongly at undissolved metal carbides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.