Abstract

The effectiveness of internal heating for enhancing the drying of molded ceramics is evaluated by both modeling and experiments. In the theoretical analysis, three dimensional drying-induced strain-stress are modeled, and the numerical solutions show that the internal heating generates lower internal stress than continuous convective heating or intermittent convective heating. Microwave drying is examined experimentally to study the effect of internal heating on the drying behavior of a wet sample of a kaolin slab. The drying behavior is compared among three modes: microwave heating, hot air heating and radiation heating. The transient behavior of temperatures in microwave drying is quite different from conventional drying by external heating. In particular, the temperature of the slab drops once in the progress of drying. This phenomenon cannot be predicted adequately by a simple model of one-dimensional heat conduction and moisture diffusion accompanied with an internal heat generation rate given as a linear function of the moisture content. It should be noted that the temperature behavior takes place due to the combined interactions with internal evaporation of moisture by rise in internal vapor pressure and shift of impedance or interference in the applicator. Microwave heating with a constant power above 100 W results in sample breakage due to the internal vapor pressure. However, if the power is dynamically controlled so as to maintain the temperature less than the boiling point of water, the drying succeeds without any crack generation until completion with a significantly faster drying rate than drying in convective heating or in the oven.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call