Abstract

In this paper we investigate the effect of internal heat modulation over a nanofluid saturated porous medium. We consider a small variation in time dependant heat source and vary sinusoidally with slow time. An energy equation will be altered by adding time dependant internal heat source. This internal heat source has its time dependent and independent parts. Time dependent part shows that the internal heat modulation over a porous media and defines controls on heat/mass transfer in the layer. We have performed a nonlinear stability analysis to investigate heat/mass transfer in the system. The nonlinear system of partial differential equations are transformed into nonlinear ordinary differential equations under similarity transforms up to the second term. This system has different system parameters and they have been investigated on heat and mass transfer graphically. The dual nature, stabilize or destabilize is due to the significant effect of internal heating modulation of the system. Further, the effect of internal heating is to destabilize the system, as a consequence heat/mass transfer enhances. It is found that internal heating modulation can be used effectively to regulate heat/mass transfer in the system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call