Abstract

The highly pathogenic avian influenza (HPAI) H5N1 influenza virus has been a public health concern for more than a decade because of its frequent zoonoses and the high case fatality rate associated with human infections. Severe disease following H5N1 influenza infection is often associated with dysregulated host innate immune response also known as cytokine storm but the virological and cellular basis of these responses has not been clearly described. We rescued a series of 6:2 reassortant viruses that combined a PR8 HA/NA pairing with the internal gene segments from human adapted H1N1, H3N2, or avian H5N1 viruses and found that mice infected with the virus with H5N1 internal genes suffered severe weight loss associated with increased lung cytokines but not high viral load. This phenotype did not map to the NS gene segment, and NS1 protein of H5N1 virus functioned as a type I IFN antagonist as efficient as NS1 of H1N1 or H3N2 viruses. Instead we discovered that the internal genes of H5N1 virus supported a much higher level of replication of viral RNAs in myeloid cells in vitro, but not in epithelial cells and that this was associated with high induction of type I IFN in myeloid cells. We also found that in vivo during H5N1 recombinant virus infection cells of haematopoetic origin were infected and produced type I IFN and proinflammatory cytokines. Taken together our data infer that human and avian influenza viruses are differently controlled by host factors in alternative cell types; internal gene segments of avian H5N1 virus uniquely drove high viral replication in myeloid cells, which triggered an excessive cytokine production, resulting in severe immunopathology.

Highlights

  • The outcome of infection with an influenza virus can vary widely from asymptomatic infection to death

  • Some avian influenza viruses, including highly pathogenic H5N1 virus, cause severe disease in humans and in experimental animal models associated with excessive cytokine production

  • We aimed to understand the virological mechanism behind the cytokine storm, and the contribution of internal gene segments that encode the viral polymerase and the non-structural proteins, since these might be retained in a pandemic virus

Read more

Summary

Introduction

The outcome of infection with an influenza virus can vary widely from asymptomatic infection to death. Infection outcomes can be influenced by host factors such as age, prior immunity, genetic susceptibility and comorbidities [1,2,3,4], differences in the virus itself undoubtedly contribute to the variation observed. The most devastating human influenza virus in recent recorded history was the ‘Spanish influenza’ virus that caused the 1918 pandemic. H5N1 ‘bird flu’ is a highly pathogenic avian influenza virus that has occasionally infected humans with catastrophic outcome. Of around 856 people infected by this virus, 52.8% have died. This contrasts starkly with the outcome of infection in 2009 with the new pH1N1 pandemic virus that was associated with just 0.02% case fatality [4,6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call