Abstract
In this paper, we propose a novel reduced-reference (RR) image quality assessment (IQA) algorithm based on the internal generative mechanism, which suggests that the human visual system (HVS) can actively predict the primary visual information and avoid the uncertainty. Specifically, the explanation of the visual scene is formulated as the process of sparse representation. In particular, the entropy of primitive accounts for the primary visual information and the discrepancy between the image signal and its best sparse description is regarded as the uncertainty in perception. As such, the combined feature that can summarize the primary visual information and uncertainty in sparse domain is required to be transmitted in the RR-IQA framework. Comparative studies of the proposed reduced reference metric is conduced on both single and multiple distortion databases, and experimental results demonstrate that the proposed metric can achieve high correlation with the human perception by only sending ignorable additional information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.