Abstract
Relaxation and hysteretic phenomena caused by hydrogen in Crl8Ni15, Cr25Ni20, and Crl8Nil6Mn10 steels have been studied by using a low-frequency internal friction (IF) technique. Five IF peaks were observed in the temperature range of 80 to 450 K; three of them are of relaxation nature and two others have a hysteretic character. The enthalpies of activation have been evaluated by means of thermoactivation analysis. Short-range migration of hydrogen atoms has been found to be responsible for the relaxation peaks, while the hysteretic peaks have been attributed to the out-gassing processes accompanied by cracking. It follows from the data on orientation dependence of the relaxation strength and values of the activation enthalpies that relaxation has a Snoeklike nature and is caused by reorientation of complexes of hydrogen atoms with substitutional solutes causing noncubic defects, the symmetry of which is not higher than orthorhombic. Study of the composition effects has led to the conclusion that different substitutional solutes contribute to different compo-nents of the relaxation spectra in accordance with their influence on hydrogen diffusivity. Effect of electron irradiation on hydrogen-induced relaxation was studied and explained in terms of short-range atomic order. No indication of hydrogen-induced Snoek-Koster (SK) relaxation was observed in accordance with the data available evidencing absence of SK relaxation in face-centered cubic (fcc) metals having low values of stacking fault energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.