Abstract
The temperature dependence of internal friction is first investigated to understand the microstructure transition during the sintering process for the green compact of aluminum powder. An internal friction (IF) peak is observed only during the first heating process while not in the subsequent cooling and repeated heating process. The temperature position of the peak is independent of the measuring frequency and the height decreases with the increasing frequency. The appearance of the peak is closely related to the weak bonding interfaces between deformed aluminum particles and increased dislocation density induced by the pressing. The appearance of the peak well responds to a recrystallization process of deformed particles and thus the formation of the grain boundary which is proven by the appearance of the grain boundary IF peak. The peak temperature position is rationalized with the onset of the recrystallization process during the sintering process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.