Abstract

Internal friction and dynamic shear modulus in an indium–21 at.% thallium alloy were measured as functions of frequency and cooling rate using broadband viscoelastic spectroscopy during the martensitic transformation which occurs in this material occurs around 50°C. Microstructural evolution of martensitic bands was captured using time-lapse optical microscopy. The amplitude of damping peaks due to the temperature-induced transformation in the polycrystalline alloy was found to exceed those reported by others for single crystals of similar alloy compositions, in contrast to the usual reduction in damping in polycrystals. The high temperature portion of the damping peak occurs before martensitic bands are observed; therefore this portion cannot be due to interfacial motion. Constrained negative stiffness of the grains can account for this damping, as well as for amplification of internal friction peaks in these polycrystals and for sigmoid-shaped anomalies in the shear modulus at high cooling rates. Surface features associated with a previously unreported pre-martensitic phenomenon are seen at temperatures above martensite-start.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call