Abstract

Abstract To predict correctly injectivity for Produced Water Re-Injection (PWRI), a good description of the formation damage by oil and solid particles have to be introduced in simulators for both fractured and non fractured flows. It is well known that the complex mechanisms of the formation of an external filter cake and of a deep internal damage should be better understood. In a previous published work1 we attempted to quantify the petro-physical external filter cake properties. In this paper, results from core flood experiments (CFE) aimed to quantify the internal damage are presented. In recent published works, CFE were performed to examine, along rock samples, the deposition profile of only solid particles. The present work focuses on the oil droplets deposition profile. The mechanisms and laws governing the internal damage with oil are different from those concerning solid particles. Like solid particles, oil tends to deposit preferentially at the core entrance but quickly a moving front of oil droplet is generated. According to our experimental results a simple method for modeling the evolution of the internal damaged permeability is presented and finally an attempt is made to extrapolate these results to the well scale for both matrix and fractured flows.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call