Abstract

Experiments and numerical simulations were carried out for an evaporating sessile droplet. The droplet was confined in the narrow gap between two glass plates, making it a “Hele‐Shaw” droplet and particle image velocimetry technique was used. In case of the evaporating droplet with pinned contact line and exposed to ambient condition, two symmetric but counterrotating convection cells were observed. After complete evaporation, the particles deposited on the substrate near the contact line. The direction of the flow was reversed for a droplet placed on uniformly heated substrate, and the final deposition pattern was a large spot at the center with a thin line at the periphery. For asymmetrically heated substrate a single convection cell appeared, and the final deposition was also asymmetric. When the liquid was subjected to localized heating, the contact line no longer remains pinned and a relatively uniform deposition was obtained after complete drying. © 2015 American Institute of Chemical Engineers AIChE J, 62: 1308–1321, 2016

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.