Abstract

Current surface fingerprint scanners measure the surface topography of skin, resulting in vulnerabilities to surface skin erosion, distortion due to contact with the scanner, and fingerprint counterfeiting. An improved means of fingerprint acquisition is necessitated in these facts. By employing an imaging technique known as Optical Coherence Tomography to the human fingertip skin, a three-dimensional digital reconstruction of subsurface layers of skin can be used for the extraction of an internal fingerprint. The internal fingerprint is robust towards counterfeiting, damage, and distortion, thus providing a replacement for the surface fingerprint. However, OCT scans are corrupted by speckle noise and have low contrast, resulting in a poor quality fingerprint representation. This research applies image enhancement procedures to OCT scan images to improve internal fingerprint quality. Furthermore, a novel internal fingerprint mapping technique is presented: papillary junction detection followed by defined region mapping. With a RMS-contrast improvement of 97%, this technique yields a much higher quality internal fingerprint when compared to previous techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call