Abstract

Ferroelectric materials with spontaneous polarization-induced internal electric fields have drawn increasing attention in solar fuel production due to the intrinsic polarized structure. However, the origination of charge separation in these materials at the nano/microlevel is ambiguous owing to the complexity of the multielectric fields. Besides, the observed charge separation ability is far from theoretical expectation. Herein, by spatially resolved surface photovoltage spectroscopy, it is clearly demonstrated that the depolarization field in single-domain ferroelectric PbTiO3 (PTO) nanoplates is the main driving force for charge separation and it can effectively drive photogenerated electrons and holes to the positive and negative polarization facets, respectively. Moreover, the charge separation ability of PTO nanoplates increases with increasing particle size along the polarization direction, due to the increasing potential difference between the opposite polarization facets. Furthermore, this driving force for charge separation directly contributes to the enhancement of the photocatalytic hydrogen evolution reaction activity in ferroelectrics. Finally, it is proved that the screening field compensates part of the depolarization field and can be diminished by adding a dielectric layer on the ferroelectric surface. These findings demonstrate the importance of increasing the depolarization field and decreasing the screening field for efficient charge separation in ferroelectric semiconductor photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.