Abstract

A first attempt at the three-dimensional evaluation of naturally initiated surface connected and internal fatigue cracks is presented. Fatigue crack initiation and growth in air and vacuum environments have been investigated through X-ray microtomography in air and vacuum environments at elevated temperatures (350 °C), accompanied by post-mortem electron microscopy of the fracture surfaces. In vacuum (<10−5 mbar), multiple internal and surface-connected crack initiation was observed, but only the surface-connected cracks grew. In contrast, fewer cracks formed in air, these were mostly surface-connected and all were observed to grow. In all instances the initiation features were associated with globular primary α. An improved fatigue life was found in vacuum, which was mostly a consequence of delayed initiation, but was also due to slower fatigue crack propagation. The non-propagation of internal cracks was taken to imply that even the good laboratory vacuum obtained here was insufficient to simulate the conditions obtained for an internal crack in a component. The crack shape evolved towards a semi-circular shape a/c=1 in air during fatigue crack growth, whilst the vacuum cracks remained semi-elliptical (a/c≃1.4). This was taken to imply that oxide-induced crack closure played a role in fatigue crack growth in air.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call