Abstract

Improving the separation efficiency and transfer ability of photoinduced electrons/holes in pyrite (FeS2)-based photocatalytic materials is significant for the photoreduction of hexavalent chromium (Cr(VI)) but still remains a challenge. Herein, a novel homojunction was prepared through in-situ growth of nickel (Ni) doped FeS2 nanoparticles on FeS2 nanobelts (denoted as Ni-FeS2/FeS2). Systematical characterizations revealed that Ni doped FeS2 nanoparticles have been successfully in situ grown along the lattice of FeS2 nanobelts. Photoreduction experiments demonstrated that the Ni-FeS2/FeS2 homojunction with 2 mmol Ni doping contents (denoted as 2Ni-FeS2/FeS2) exhibited the optimum Cr(VI) reduction efficiency among the studied catalysts. Density Functional Theory (DFT) calculated results verified that Ni doping could not only be advantageous for the formation of sulfur vacancies but also modify the band gap and band structure of FeS2 nanoparticles. Moreover, several doping energy levels caused by Ni doping have also appeared near the Fermi level of FeS2 nanoparticles. The migration paths of electrons and the existence of internal electric field (IEF) in homojunction were further verified by the calculation of work function. To sum up, the doping energy levels and IEF that produced by homojunction played important roles in accelerating the separation efficiency of its photogenerated carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.