Abstract

Abstract Ultra-diffuse galaxies (UDGs) are spatially extended, low surface brightness stellar systems with regular elliptical-like morphology found in a wide range of environments. Studies of the internal dynamics and dark matter content of UDGs that would elucidate their formation and evolution have been hampered by their low surface brightnesses. Here, we present spatially resolved velocity profiles, stellar velocity dispersions, ages, and metallicities for nine UDGs in the Coma cluster. We use intermediate-resolution spectra obtained with Binospec, the MMT's new high-throughput optical spectrograph. We derive dark matter fractions between 50% and 90% within the half-light radius using Jeans dynamical models. Three galaxies exhibit major axis rotation, two others have highly anisotropic stellar orbits, and one shows signs of triaxiality. In the Faber–Jackson and mass–metallicity relations, the nine UDGs fill the gap between cluster dwarf elliptical (dE) and fainter dwarf spheroidal galaxies. Overall, the observed properties of all nine UDGs can be explained by a combination of internal processes (supernovae feedback) and environmental effects (ram pressure stripping, interaction with neighbors). These observations suggest that UDGs and dEs are members of the same galaxy population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.