Abstract

Soliton is a universal format of nonlinear wave propagation in nature. Soliton can maintain its shape during propagation. This unique property has been widely observed in plasma physics, high energy electromagnetics, hydrodynamics, and nonlinear optics. Soliton interactions can reflect collective dynamic behaviors in complex nonlinear systems, showing significant basic research value. Passive mode-locked laser is an ideal platform for studying soliton interaction. The attraction and repulsion between two optical solitons can form soliton molecules. Their properties have been intensively studied by optical spectral analysis. However, conventional optical spectrum analyzers show low resolution and long average time. Time-stretched dispersive Fourier transformation (TS-DFT) is an emerging-powerful measurement technology, which can map the spectrum of an optical pulse to a temporal waveform under sufficient dispersion. The TS-DFT makes it possible to detect the dynamics of the solitons in real time. Based on TS-DFT, the internal dynamics of the solitons in Ti:sapphire femtosecond laser is studied in experiment. By changing the pump power, the stable soliton molecules with a separation of 180 fs and the weak phase oscillatory soliton molecules with a separation of 105 fs are observed. The amplitude in the weak oscillation state is merely 0.05 rad. We also find that the soliton molecules in stable state can transform into phase sliding state under environmental perturbation. These optical soliton molecules with a binding separation of 100 fs are of great significance for studying the short-range nonlinear interactions of solitons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call