Abstract

The system that microbial electrolysis cell coupled anaerobic digestion (termed MEC-AD) with metal organic framework-modified cathode was operated under different voltage levels (0–1.2 V) at 20 °C. The maximum methane yield increased to 0.23 ± 0.01 LCH4 g-1COD at 0.9 V, with 28% improvement compared to 0 V (0.18 ± 0.01 LCH4 g-1COD). Moreover, total volatile fatty acid and propionate accumulation decreased by 32% and 15% at 0.9 V, indicating the system has potential to alleviate acidity suppression. Acidogens and electroactive microorganisms was clearly enriched with increasing applied voltage. Specifically, the abundance of Smithella increased, which could degrade propionate to acetate. Methanosaeta was dominant, accounting for ca. 40.1%∼55.1% of the archaea community at 0.3–1.2 V. Furthermore, the system reinforced psychrophilic methanogenesis by activating important enzymes involved in related metabolism pathways. Overall, this study provides perspective on the future practical application for the regulation of psychrophilic AD in electrochemically integrated bioreactors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.