Abstract

Different types of polyelectrolyte multilayer films composed of poly(L-lysine)/hyaluronan (PLL/HA), chitosan/hyaluronan (CHI/HA) and poly(allylamine hydrochloride)/poly(L-glutamic acid) (PAH/PGA) have been investigated for their internal composition, including water content, ion pairing, and ability to be covalently cross-linked, as well as for their mechanical properties. Film buildup under physiological conditions was monitored by the quartz crystal microbalance with dissipation monitoring (QCM-D) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), which allows unambiguous quantification of the different groups present in the polyelectrolytes. (PAH/PGA) films emerged as the most dense films with the lowest hydration (29%) and the highest COO(-) molar density. In addition, PAH is greatly in excess in these films (3 PAH monomers per PGA monomer). The formation of amide bonds during film cross-linking using the water-soluble carbodiimide EDC was also investigated. All of the films could be cross-linked in a tunable manner, but PAH/PGA exhibited the highest absolute number of amide bonds created, approximately 7 times more than for (PLL/HA) and (CHI/HA) films. The Young's modulus E of the films measured by AFM nanoindentation was shown to vary over 1 to 2 orders of magnitude for the different systems. Interestingly, a linear relationship between E and the density of the covalent cross-links created was observed for (PLL/HA) and (CHI/HA) films whereas (PGA/PAH) films exhibited biphasic behavior. The mean distance between covalent cross-links was estimated to be approximately 11 nm for (PLL/HA) and (CHI/HA) films and only approximately 6 nm for (PAH/PGA) films for the maximum EDC concentration tested (100 mg/mL).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.