Abstract

We study the internal color properties of a morphologically selected sample of spheroidal galaxies taken from the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) Early Release Observation program of UGC 10214 (''the Tadpole''). By taking advantage of the unprecedented high resolution of the ACS in this very deep data set, we are able to characterize spheroids at subarcsecond scales. Using the V606 and I814 bands, we construct VI color maps and extract color gradients for a sample of spheroids at I814 < 24 mag. We assess the ability of the ACS to make resolved color studies of galaxies by comparing its results with the multicolor data from the Hubble Deep Fields (HDFs). Here we report that with ACS WFC data using less than � 1/10 the exposure of the WFPC2 HDFs, it is possible to confidently carry out resolved studies of faint galaxies at similar magnitude limits. We also investigate the existence of a population of morphologically classified spheroids that show extreme variation in their internal color properties, similar to the ones reported in the HDFs. These are displayed as blue cores and inverse color gradients with respect to those accounted for from metallicity varia- tions. Following the same analysis, we find a similar fraction of early-type systems (� 30%-40%) that show nonhomologous internal colors, suggestive of recent star formation activity. We present two statistics for quantifying the internal color variation in galaxies and tracing blue cores, from which we estimate the ratio of nonhomogeneous to homogeneous internal colors as a function of redshift up to zP1:2. We find that it can be described as about constant as a function of redshift, with a small increase with redshift for the fraction of spheroids that present strong color dispersions. The implications of a constant fraction at all redshifts suggests the existence of a relatively permanent population of evolving spheroids up to zP1. We discuss the implications of this in the context of spheroidal formation. Subject headingg galaxies: elliptical and lenticular, cD — galaxies: evolution — galaxies: fundamental parameters Online material: color figures, machine-readable table

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.