Abstract
Several Salmonella enterica outbreaks have been traced back to contaminated tomatoes. In this study, the internalization of S. enterica Typhimurium via tomato leaves was investigated as affected by surfactants and bacterial rdar morphotype, which was reported to be important for the environmental persistence and attachment of Salmonella to plants. Surfactants, especially Silwet L-77, promoted ingress and survival of S. enterica Typhimurium in tomato leaves. In each of two experiments, 84 tomato plants were inoculated two to four times before fruiting with GFP-labeled S. enterica Typhimurium strain MAE110 (with rdar morphotype) or MAE119 (without rdar). For each inoculation, single leaflets were dipped in 109 CFU/ml Salmonella suspension with Silwet L-77. Inoculated and adjacent leaflets were tested for Salmonella survival for 3 weeks after each inoculation. The surface and pulp of ripe fruits produced on these plants were also examined for Salmonella. Populations of both Salmonella strains in inoculated leaflets decreased during 2 weeks after inoculation but remained unchanged (at about 104 CFU/g) in week 3. Populations of MAE110 were significantly higher (P<0.05) than those of MAE119 from day 3 after inoculation. In the first year, nine fruits collected from one of the 42 MAE119 inoculated plants were positive for S. enterica Typhimurium. In the second year, Salmonella was detected in adjacent non-inoculated leaves of eight tomato plants (five inoculated with strain MAE110). The pulp of 12 fruits from two plants inoculated with MAE110 was Salmonella positive (about 106 CFU/g). Internalization was confirmed by fluorescence and confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can move inside tomato plants grown in natural field soil and colonize fruits at high levels without inducing any symptoms, except for a slight reduction in plant growth.
Highlights
Fruits and vegetables, in particular leafy greens and fruit that are consumed raw, are increasingly recognized as vehicles for transmission of human enteric pathogens
We investigated the internalization of S. enterica Typhimurium into tomato plants via leaves, and evaluated the effects of surfactants and the bacterial rdar morphotype on internalization
Plant surface disinfection efficiency On average, 6.60610461.106104 S. enterica serovar Typhimurium CFU were recovered after the alcohol/hypochlorite washes of the inoculated leaves, whereas 1.36610860.286108 CFU were obtained in the absence of the leaf disinfection treatments
Summary
In particular leafy greens and fruit that are consumed raw, are increasingly recognized as vehicles for transmission of human enteric pathogens. Despite the increased importance of fresh produce as a source of enteric pathogens for humans, there is currently limited knowledge about contamination points in the supply chain or about the mechanism by which human pathogens colonize and survive on or in fruits and vegetables [1]. Salmonella enterica is the most frequently encountered pathogen associated with foodborne illness in the United States [2,3]. Salmonella-contaminated tomatoes have led to several multistate and international outbreaks, each involving hundreds of cases [5,6,7,8,9]. Little is known about the routes of contamination and potential internalization in plants [13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.