Abstract

Molecular dynamics simulations of the unliganded T state of human hemoglobin showed the existence of a spontaneous, very wide cavity on the distal side of the alpha subunit. This cavity consists of three tunnels spreading from the vicinity of the iron atom (the ligand binding site) to the surface of the subunit, constituting possible passageways for the entrance of the ligand. A fourth passageway was characterized due to the trajectory of water molecules entering or leaving the heme pocket. Analogous passages were observed in the beta subunits. They all appear and disappear dynamically, although some parts of them are more persistent along the trajectories. The most persistent regions within these tunnels correspond to all the xenon docking sites of human cytoglobin and to some of those of sperm whale and horse heart myoglobins and group I truncated hemoglobins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.