Abstract
Internal and scattered time-dependent intensities are calculated for a dielectric sphere illuminated with a pulsed Gaussian beam. The center frequency of the pulse spectrum is chosen to be on, near, or far from a morphology-dependent resonance of the sphere. The center of the beam is positioned inside, on the edge, or outside the sphere. The transfer function at a point, i.e., the electric field at each frequency of the pulse spectrum, is calculated with the plane-wave spectrum technique and the T-matrix method. The frequency spectrum of the field at a point is calculated by means of the incident field spectrum and the transfer function at that point. The time dependence of the electric field at a point inside or outside the sphere is obtained by inverse Fourier transforming the frequency spectrum. Two different decay rates in the internal and the scattered time-dependent intensity are observed: a decay rate that depends on the incident pulse spectrum and a rate that depends on the line shape of the resonant mode of the sphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.