Abstract

Within the generalized Lorenz-Mie theory (GLMT) framework, an analytical solution to the scattering by a uniaxial anisotropic cylinder, for oblique incidence of an on-axis Gaussian beam, is constructed by expanding the incident Gaussian beam, scattered fields as well as internal fields in terms of appropriate cylindrical vector wave functions (CVWFs). The unknown expansion coefficients are determined by virtue of the boundary conditions. For a localized beam model, numerical results are provided for the normalized internal and near-surface field intensity distributions, and the scattering characteristics are discussed concisely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.