Abstract
ObjectiveFinding a non-invasive biomarker for Globus Pallidus interna Deep Brain Stimulation (GPi-DBS) efficacy. Dystonia heterogeneity leads to a wide variety of clinical response to GPi-DBS, making it hard to predict GPi-DBS efficacy for individual patients. MethodsEEG-EMG recordings of twelve dystonia patients who received bilateral GPi-DBS took place pre- and 1 year post-surgery ON and OFF stimulation, during a rest, pinch, and flexion task. Dystonia severity was assessed using the BFMDRS and TWSTRS (pre- and post-surgery ON stimulation). Intermuscular coherence (IMC) and motorcortex corticomuscular coherence (CMC) were calculated. Low frequency (4–12 Hz) and beta band (13–30 Hz) peak coherences were studied. ResultsDystonia severity improved after 1 year GPi-DBS therapy (BFMDRS: 30%, median 7.8 (IQR 3–10), TWSTRS: 22%, median 6.8 (IQR 4–9)). 86% of IMC were above the 95% confidence limit. The highest IMC peak decreased significantly with GPi-DBS in the low frequency and beta band. Low frequency and beta band IMC correlated partly with dystonia severity and severity improvement. CMC generally were below the 95% confidence limit. ConclusionsPeak low frequency IMC functioned as biomarker for GPi-DBS efficacy, and partly correlated with dystonia severity. SignificanceIMC can function as biomarker. Confirmation in a larger study is needed for use in clinical practice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.