Abstract

Abstract The intermolecular vibrations of the anisole—benzene complex in the ground and excited electronic states have been observed by the LIF (laser-induced fluorescence) and fluorescence-dip techniques. Short progressions due to the intermolecular vibrations suggest a small structure change of the complex upon electronic excitation. The LIF excitation spectrum shows predominant progressions of 27 cm −1 , which is tentatively assigned to one of the intermolecular bending modes in the excited electronic state. On the other hand, the fluorescence-dip spectrum shows only a series of bands with irregular intervals due to the intermolecular modes in the ground electronic state. The decay rates of the vibrationally excited complex in the ground electronic state have also been measured with the SEP-LIF (stimulated emission pumping-laser-induced fluorescence) technique, where the complex vibrationally excited by SEP is probed by the delayed LIF measurements. The complex excited to its purely intermolecular mode stays in the initially prepared state after a delay time of 1 μs. On the other hand, the complex excited to the intramolecular vibrational states above 500 cm −1 does not seem to stay in the prepared states. Neither the relaxed complex nor the dissociated monomer was detected. A possible reason for this observation is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call